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AIIItrIct-lnelastic buckling including the effects of transverse shear is analyzed for flat rectaDgular plates
in llJIiform uniaxial compression. Using a hardening material obeying the von Mises yield condition, the
problem is treated according to both the incremental aad deformation theories of plasticity.

Using boundary conditions which permit separation of variables it becomes possible to solve the resulting
ordinary differential equations by asymptotic approximations giving closed form expressions for critical
IoacIs. The correction terms due to shear effects are obtained for three cases: (I) for infinitely long simply
supported plates, (2) for square simply supported plates, aad (3) for infinitely long ones simply supported
on three sides and free on one unloaded edge. The analysis presented is also suitable for sandwich plates.

NOTATION
A,B,C,D moduli in stress-strain relations

a,b,h length, width and thickness of rectangular plate
E Young's modulus of elasticity

e = E/E,·I quantity used in deformation theory
E" E, secant modulus, tangent modulus

F shear modulus in plastic range

f
h = !SI/S'I second invariant of deviatoric stress tensor s'l

Mu = uuz dz, M••, M,. moments/unit length of the plate due to buckling
m, n integers, number of half waves in a buckled plate in longitudinal and transverse

L
directions respectively

Q, =(5/6) _1'" dz. Q. transverse shear forces/unit length of the plate due to buckling
, = /I. V. W x. y and z components of displacement vector

a =m'lr/a
Ell increment of strain components. elastic plus plastic, due to buckling

'1 =ay alternative variable
/( = 1.2u1F buckling parameter

A EIB, ratio of Young's modulus to tangent modulus
v Poisson's ratio
a buckling stress

a'i increment of stress components due to buckling
t/>(x. y) component of rotation of the normal to middle plane about y axis
",(x, y) component of rotation of the normal to middle plane about x axis

I. INTRODUCTION
The inelastic buckling of plates using the concept of bifurcation of equilibrium and the
conventional theory of plates, neglecting shear deformations, has been investigated among
others by Illyushin[l}, Stowell[2} and Bijlaard[3} on the basis of the constitutive relations of
the J2 deformation theory of plasticity and by Handelman and Prager[4} on the basis of the
constitutive relations of the h incremental theory of plasticity. Since their publications it has
been well known that while the incremental theory of plasticity gives buckling loads which are
sometimes absurdly higher than the experimental results, the deformation theory of plasticity.
gives loads which are in reasonable agreement with the experimental results [5]. This has
resulted in the apparent paradox as to why the incremental theory of plasticity, which has been
accepted as a valid theory of plasticity, gives unrealistic results.

Pearson[6} improved the incremental analysis by incorporating Shanley's concept of con­
tinuous loading. However, the improvement did not significantly lower the predicted buckling
stress. Subsequently, Onat and Drucker [7} analyzed the buckling of a cruciform section with
thin sides and showed that if one takes into account small, unavoidable initial imperfections
then the incremental theory does lead to realistic buckling loads. This explanation, however,
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leaves the buckling load somewhat dependent upon the magnitude of imperfections. The
present view as expressed by Hutchinson [8] is that for a restricted range of deformations, such
as met in the usual buckling problems, the J2 deformation theory can be shown to be equivalent
to a refined incremental theory of Sanders [9], taking into account the development of a corner in
the yield surface under progressive compression. Thus, the bifurcation loads obtained on the basis
of J2 deformation theory are in fact those obtainable from a more complicated but
physically acceptable incremental theory of plasticity[8].

The present paper analyzes inelastic buckling of plates by including transverse shear effects
and using the constitutive relations of both the simple h deformation and h incremental
theories of plasticity. While shear effects have been considered for elastic buckling[lO), the
extension of such analysis to inelastic buckling has yet not been carried out thoroughly.

Three cases of buckling of rectangular plates under uniform compression in longitudinal
direction are considered. Bifurcation buckling stresses are obtained for (1) simply supported
infinitely long plates, (2) simply supported square plates and (3) infinitely long plates supported
on three sides and unsupported on one longitudinal side. Using asymptotic approximations, it
becomes possible to express the buckling stresses in closed form, indicating explicitly the
correction terms due to shear effects, for the above cases.

2. CONSTITUTIVE RELATIONS

The strains are considered small and the usual assumptions of isotropy and incom­
pressibility in plastic state are made [II]. The material is considered to obey the von Mises yield
condition

(2.1)

for both the theories, where c is the hardening parameter. Loading occurs when dJ2 > O.
Shanley's concept of continued loading during buckling is accepted and therefore, no unloading
takes place.

Prior to buckling, the perfectly plane rectangular plate is hardening under uniform com­
pression U' in the longitudinal direction. With buckling, the state of stress is changed by the
appearance of non-zero stress increments U'ij in other directions. Taking U'33 = 0 for the plate
problems, the relations among the stress and strain increments[12] are

(2.2)

where

B = E(A +3+3e)/[A (5 - 4v +3e) - (1 - 2v )2]

C = 2E(A - 1+2v)/[A(5 - 4v +3e) - (1- 2V)2]

D = 4EA/[A(5 - 4v +3e) - (1- 2v)2]

F = EI(2+2v+3e) (2.3)

and A =EIB, and e =EIE,-1 are obtained from a uniaxial stress strain curve of the material of
the plate.

The above relations are according to the deformation theory of plasticity [3]. The relations
for the incremental theory [6] are obtained by taking e = 0, as noted by Bijlaard. Thus, while the
analysis may be carried out on the basis of the deformation theory alone, the results for the
incremental theory are obtained simply by putting e = 0 in the results of the deformation
theory. If in addition A = 1 is substituted, results for elastic theory are obtained.

3. GOVERNING EQUATIONS AND GENERAL SOLUTION

To derive the governing equations allowing for shear effects, a generalization of Kirchhoff's
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approximation is used. The changes in displacements due to buckling are taken as

ill = u(x, y) - z</l(x, Y), il2= v(x, y) - Z",(x, Y), U3 = w(x, y)

569

(3.1)

where w is the out of plane displacement and </I and '" can be interpreted as the components of
rotation 'of the normals to the middle plane z = 0 (Fig. I). As is usual in the engineering theories
of plates, the incompatability between the assumptions U33 =0 and ~33 =0 is ignored in the
analysis.

Due to buckling, the stress components change from -u to -u +UII in the longitudinal
direction and from 0 to Uij in the other directions, except that Un = O. The buckled plate is in
equilibrium under this changed state of stress and one may use the principle of virtual work to
derive the equations of equilibrium and the necessary boundary conditions. Taking variations of
(3.1) as virtual displacements and taking care to include nonlinear terms in ~II so as not to
neglect significant work terms, the following equilibrium equations for out of plane buckling[12]
are obtained

(3.2)

subject to the boundary conditions Mn = 0 or &/J = 0, Mx, = 0 or ~'" = 0, Qx = uhwx or ~w = 0
at the boundaries x = constant and M" = 0 or~ = 0, Mx, = 0 or ~</I = 0, Q, = 0 or ~w = 0 at the
boundaries y = constant.

According to Shanley's concept, relations (2.2) hold throughout the thickness of the plate and
the stress resultants are expressible as

Mn = -(h 3/l2)[B</Ix +C"',), M" =-(h 3/12)[C</Ix +Dt/!,),

Mx, = -(h 3/12)[F</I, +F",x],

Qx = -Fkh[-wx+</I], Q, = -F1ch[-w, +"']

(3.3)

where k, a correction factor, is taken equal to 5/6, same as in the elastic case [13]. Substituting
eqns (3.3) into eqns (3.2), the following governing eqUations, in terms of the unknown function

</I, '" and w, are obtained

(BIF)</Iu + </I" - (l0/h 2)</I + (CIF + I)"'x, + (lO/h~wx = 0

(CIF + I)</Ix, + (DIF)"'" + "'U - (l0/h 2
)", + (l0Ih 2)w, = 0

-</Ix - "', +Wu +w" - (1.2uIF)wu = O.

A set of boundary conditions at the loaded edges permitting separation of variables is

Mu =w="'=O

z
Fig. I. Plate coordinate system.

(3.4)

(3.5)
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where the third boundary condition implies MX1 # 0, an unlikely restraint if the edges are
considered simply supported. Comments on the effect of this restraint upon the solution will be
made later. A solution satisfying eqn (3.5) is

4> =cl>(y) cos ax, '" = 'I'(y) sin ax, W = W(y) sin axla (3.6)

where a = m1rla and m is the number of half waves in which the plate buckles. The functions
cl>(y), 'I'(y) and W(y) satisfy the following simultaneous ordinary differential equations

<2>'1'1 - (BIF + IOlh 2a 2)<2> +(CIF + 1)'1''1 +(lOlh2a2)W = 0

-(CIF + 1)<2>'1 +DIF'I''1'1 -(l + IOlh2a2)'I' +(l0Ih2a2)W'I = 0

<2>-'1''1 + W'l'I +(K -I)W =0

(3.7)

and appropriate conditions at the edges y =constant, where TI =ay is a non-dimensional
variable and K =1.2qIF is the buckling parameter. Following the usual procedure, the charac­
teristic equation for the system of eqns (3.7) is

(3.8)

where

"'" (lO/h2a2)(4FID +2C/D)

K] = (l + IOlh2a~(BK/D - BID + IOKFIDh2a2) "'" (l0Ih2a2)(-B/D + IOKF/Dh2a2) (3.9)

and

R = (-BIF +C2/DF +2C/D).

The basis of the approximations indicated in eqns (3.9) is following. Since the ratios of
moduli B, C, D and F are of order unity throughout the elasto-plastic range, one may neglect K

in comparison with them. Also, considering a long simply supported plate to buckle in nearly
square planes, one has m "'" alb and therefore IO/h 2a 2 ::.: b21h 2 is a large number ~ I. Con­
sequently, IOKFIDh2a2 cannot be neglected in comparison to unity. Using these asymptotic
approximations, the roots of eqn (3.8) may be expressed as

s] = -s.. = P, p2=(2F +C)/D + [(2F +Ci/D2 - BID + IOKFIDh2a2]1l2; (3.10)

Ss = -S6 = v'(-I)q, _q2::.: (2F +C)/D - [(2F +C)2/D2 - B/D + IOKFIDh2a2]1l2.

The general solution of eqns (3.7) is

'I' = At sinh PTI +A 2 cosh PTI +A] sin qIJ

+ A.. cos ql1 + As sinh n, + A6 cosh n, .
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+(AJc3/qk.) sin qn +(Askslrlc6)cosh "' +(A~s/~) sinh ,."

W = (A l h l lpk2)cosh PT/ +(A2ht/pk2)sinh PT/ - (A3h2lqk.) cos q",

where AI to A6 are arbitrary constants. The expressions for hit kit etc. are obtain~d by
substituting eqns (3.11) into eqns (3.7)

(3.12)

where S2 is to be replaced respectively by p2, _q2 and r 2
• The expressions corresponding to

possible boundary conditions Myy =Mxy =Qy =0 at edges y =constant are obtained by sub­
stituting eqns (3.6) and (3.11) into eqns (3.3), see [12].

4. PLATES SIMPLY SUPPORTED ON ALL FOUR SIDES

Case (a) w =Myy =cI> =0 at y =±b/2.
For a symmetrical buckling mode, satisfying the above boundary conditions, the vanishing

of characteristic determinant leads to

cos qabl2 =0 or q =n'TTlab (4.1)

where n =1,3,5, ... is the number of half waves in transverse direction. Since _q2 is a root of
eqn (3.8), following exact expression for the buckling parameter is obtained by substituting this
value in eqn (3.8) and using exact expressions for Kit K2, K3

K[(n'TTlabt +{(l0Ih 2a2XF/D + 1) - R}(n'TTlab)2 +(l +101h2a-:XBID + IOFIDh2a2)]

= (n'TTlab)6 +(-R +1+ 10Ih2a2Xn'TTlab)·+{-R +BID +(l0Ih2a-:X4F +2C)/D}(n1r/abi

+(l + IOlh2a~B/D.

For minimum buckling stress n =1 and m, obtained by solving oKloa = 0, is given by

(4.2)

x {(l +BIF)Y(DIB) +2+RDI2B +CIF +2FIB +CIB}] (4.3)

up to the terms of order h21b2
• The minimum buckling stress is

x {(RD +4F +2C +BDIF)(l +Y(DIB)-(4F +2CXDIF +Y(BD)IF) -(B +Y(BD»DIF)]
(4.4)

up to the terms of order h21b2
•

Comapring the above results with those from the conventional theory [6), it is seen that the
correction terms due to shear are small, of order h21b2

, in both of the eqns (4.3) and (4.4).
Moreover, it can be verified that one may use, in lieu of eqn (4.3), the simpler result

(4.5)
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of the conventional theory and obtain the same correction terms as present in eqn (4.4). This
simplification is considered permissible and is used again in case (b) to be analyzed below. For
m == n == I, the buckling stress for a square plate of sides a == b is

x {2RD + 8F + 4C + 2BDIF - (4F + 2C + D)(B + D)IF)]. (4.6)

Case (b) w == Myy == Mxy == 0 at y == ±b/2.
This set of boundary conditions is more representative of simple support. For a symmetrical

buckling mode, the characteristic determinant equated to zero gives

. pab qab pab . qab pab qab rab
C,smh-

2
-cos 2 +C2cosh-2-smT+C3cosh 2 cos-

2
-tanhT==0 (4.7)

where C.. C2 and C3 depend on the buckling stress and the material parameters and have been
defined in [12]. As an alternative to numerical methods, eqn (4.7) is solved here by using an
asymptotic approach, obtaining closed form expression for the buckling stress. As remarked
earlier, one may take, for infinitely long plates, (ab)2 == 7T

2y'(DIB) and note that

(4.8)

remains much larger than p2 and q2 throughout the elasto-plastic range. Furthermore, if the
objective is to get an approximation for u valid up to terms of order (hIb), one may neglect terms of
order h21b 2 and reduce eqn (4.7) to

(4.9)

where n == 1,3,5, .... Using n == I and (ab)2 == 7T
2y'(DIB), the expression for minimum buckling

stress, with correction terms up to the order of (hlb), is

(4.10)

The buckling stress for a square plate, with a == band ab == 7T, is

(4.11)

The adequacy of these asymptotic approximations has been verified by solving eqn (4.7) for
several special cases using a digital computer and without making approximations.

To demonstrate the application of the above results, graphs of the buckling stress as
function of blh are shown in Fig. 2 for square plates and in Fig. 3 for infinitely long plates. The
material properties used are defined by a uniaxial stress-strain curve of the form

f == ullO,700 + 0.OO2(uI61.4)20; u in ksi. (4.12)

This is representative of the behaviour of 14S-T6 aluminum alloy and matches curve C of Fig.
6 of [5] up to a stress level of 62 ksi. Poisson's ratio is taken as 0.32. Results are shown for both
the theories of plasticity. Graphs of the buckling stress computed by using the conventional
theory are also shown.

Comparing eqn (4.10) with eqn (4.4) or eqn (4.1 I) with eqn (4.6), it is seen that the correction
term for the case M", == 0 is proportional to hlb while that for the case 4> == 0 is proportional to
h21b2

• This conclusion holds both for the infinitely long arid the square simply supported plates.
It is therefore conceivable that relaxation of the boundary condition from 1/1 == 0 to M"y == 0 at
the loaded edges could further contribute a correction term of order hlb, making the total
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Fig. 2. Critical stress as function of blh for square plates simply supported on all sides.

correction nearly twice as much. However, an analysis with Mxy =0 at x =0, a does not admit
a product solution of the form of eqns (3.6) and some alternative approach has to be employed
to solve the problem analytically.

5. BUCKLING OF LONG PLATES UNSUPPORTED ON ONE UNLOADED EDGE
The cases treated below have been identified in literature with the buckling of a column of

cruciform section. This is a much discussed problem because, as is well known, the predicted
buckling stress is particularly sensitive to the theory of plasticity used, incremental or
deformation theory. Two cases corresponding to q, = 0 and Mxy = 0 at the supported edge are
treated.

Case (c) w = Myy =ct> = 0 at the supported edge y =O.
The boundary conditions for the unsupported edge y = b, are obviously Myy = Mxy = Qy = O.

The characteristic determinant leads to

C1 sinh pab cos qab + C2 cosh pab sin qab + C3 cosh pab cos qab tanh rab = 0 (5.1)

where Cit C2, C3 depend on u and are given in [12]. It is well known from the conventional
theory that the lowest buckling mode is just a single half wave and this is also assumed to be
true when shear effects are included. This means that m = I and ab = '1rb/a is a small quantity.
Therefore, since p2::.: q2::.: Y(l0ICF/Dh2a~, the trigonometric functions can be replaced by their
power series expansion, say up to the terms of order (ab)3. Then, taking into consideration
relative magnitudes of quantities, in particular the facts that a ~ b and that r2a2b2"" IOb 2/h 2 is a
large quantity, the buckling stress can be shown to be

(5.2)u = Fh 2/b 2(1- h/Y(lO)b)

up to the correction term of order (h/b).

Case (d) w =Myy =Mxy =0 at the supported edge y = O.
The characteristic determinant in this case is of a 6 x 6 matrix. Omitting the details [12], the

same approximation procedure as was applied in case (c) leads to

(5.3)



574 S. C. SHRIVASTAVA

65,-------,------r--------,------r-----,--------,

Inere.
Theory

1- I 0-1

1-2 0-2

1-3 0-3

with shear effects
Case I,; -0 ',~

with shear effects
Case 2, Mx1-O

without shear effects

50

601------+--f-~""""":+_---___l----__+_----+_---__t

iii
~

Vl
Vl
UJ
a:
t;; 55 f-----+-----+------P~~~..,j_---_+---___1
...J
<l:
U
~cr
u

28272624 25
b/h

Fig. 3. Critical stress as function of bill for infinitely long plates simply supported on all sides.

again up to the correction term of order hlb. It can be noted that changing the boundary
condition from t/> = 0 to Mlty = 0 doubles the correction term.

Figure 4 shows numerical results. The critical stress is plotted as a function of width-to­
thickness ratio for the material defined by eqn (4.12). It is seen that in the range of interest, the
correction to the critical stress is 10% in the case of incremental theory and 4% in the case of
deformation theory.

As a specific example, consider a long (alb = 10) plate supported on three sides with blh = 8.
Then for this plate, the various results are

" =0.32
Incremental

Theory
Deformation

Theory

without shear effects
with shear effects, t/> = 0
with shear effects, Mlty = 0

63.5 ksi
61.0 ksi
58.3 ksi

57.4ksi
56.5 ksi
55.5 ksi

Thus, in this case, the improved result of the incremental theory is almost the same as the result
from the deformation theory without shear effects. For lower blh ratios the divergence between
results of the two theories is, however, quite appreciable. The fact remains that F is the elastic
shear modulus in case of the h incremental theory and therefore the predicted buckling stress
is identical to that for the elastic case, irrespective of the degree of hardening and despite the
refinements due to shear effects.

6. FINAL COMMENTS

The results derived show that the correction terms due to shear effects are in general
proportional to h/b, being greater for the stres~free case, Mxy = 0 than for the case of vanishing
rotation, t/> =O. It is noteworthy that for the buckling of a plate supported on three sides, the
correction due to shear effects is generally larger' (10%) for the h incremental theory than that
for the deformation theory (4%). The asymptotic formulas, as presented, are applicable not only
to the deformation and incremental theories of plasticity but can also be specialized to the cases
of elastic buckling.
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Fig. 4. Critical stress as function of blh for infinitely long plates simply supported on three sides.

The procedure followed can be generalized to obtain governing equations which include still
higher order effects, for example, the effect of transverse stress increment U33 on the buckling
stress. However, the resulting analysis will necessarily be more involved.

An immediately useful extension of the present analysis will be its application to the
buckling of sandwich plates when the facing is in inelastic range. If the modulus of the core is
low in comparison to the tangent modulus of the facing, shear effects will necessarily be much
more substantial.

Aclalowltdg_t-The author is grateful to Prof. Hans Bleich of Columbia University for sugesting and guiding this
investiption.
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